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Abstract

While artificial intelligence (AI) has demonstrated potential in automating clinical trial matching, most existing solutions
rely on high-level structured data or oversimplified criteria. This study introduces a framework to structure and analyze eli-
gibility criteria across three real-world trial protocols, aiming to inform more granular Al-driven trial matching strategies.
Trial criteria from three protocols were decomposed into individual variables and evaluated based on data type, scope,
and dependency. Complexity was assessed using a novel formula incorporating the number of independent and dependent
variables, alongside the Flesch-Kincaid reading grade level. Quantitative analysis explored variation across trials. Proto-
cols contained between 22-160 eligibility variables, with 4-22% showing interdependence. Reading grade levels ranged
from sixth grade to first-year college. Complexity scores varied significantly, with some trials exhibiting particularly high
cognitive and logical burdens. Recursive and hierarchical structures were prevalent in high-complexity protocols. This
study reveals the substantial variability and structural complexity of clinical trial criteria, highlighting challenges for Al
matching systems. A standardized approach to measuring trial complexity can enhance algorithm transparency, scalability,
and interpretability. These findings underscore the need for structured, computable frameworks to improve equity and
efficiency in clinical trial recruitment.

Keywords Artificial intelligence - Eligibility determination - Natural language processing - Medical informatics -
Decision support systems - Clinical

Introduction

Clinical trials are necessary for medical innovation, but
recruitment remains a substantial obstacle [1, 2]. In 2020,
41% of Americans reported not knowing anything about
clinical trials, and only 5% of eligible adult cancer patients
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participated in trials [3, 4]. Four of the primary enrollment
barriers include healthcare professional time constraints,
limited awareness of available trials, strict eligibility cri-
teria, and complex clinical design [5]. Additional barriers,
such as logistical challenges and historical mistrust, further
impede participation, especially among underrepresented
populations [6, 7]. These challenges are particularly promi-
nent in rare disease research, where eligible patient popu-
lations are inherently limited and geographically dispersed
[8]. Low enrollment is the main reason for randomized con-
trolled trials (RCTs) stopping early [9], which compromises
statistical power, yields inconclusive results, and wastes
resources [10]. Safely lowering trial participation barriers
would improve the accuracy and speed of data collection on
new treatments, facilitating drug safety and timely release
to the public [11]. With drug development costs exceeding
$2.6 billion apiece due in part to inefficiencies in the clini-
cal trial process [12], innovative approaches are needed to
streamline matching while addressing accessibility, trans-
parency, and inclusivity.
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Artificial intelligence (AI) has garnered significant atten-
tion in clinical trial matching. Coarse-grained matching,
which uses higher-level structured criteria (e.g., Interna-
tional Classification of Diseases [ICD] codes), enables sub-
group analysis but is insufficient for trials with more detailed
or unstructured eligibility requirements [13]. For example,
Trial GPT matched patients to potential trials with 87%
accuracy, decreasing screening time by 43%, but relied on
high-level criteria [14]. Oncology trials increasingly rely on
intricate biomarker-driven eligibility, demanding advanced
frameworks that integrate molecular, clinical, and demo-
graphic parameters [15]. Fine-grained matching requires
extracting and aggregating multiple data points, often from
unstructured notes, and applying logical or temporal rela-
tionships (Fig. 1). Moreover, the criteria include logical and/
or temporal functions across multiple extracted data points
to determine eligibility. These fine-grained criteria require
multi-stage analyses across many clinical notes of differ-
ent formats and hundreds of variables to be extracted per
trial to include/exclude more specific groups of patients,
allowing for more detailed hypothesis testing. For instance,
confirming that “at least 12 months have elapsed between
the last curative treatment and disease recurrence” requires
extracting and reasoning over several timestamps and
events. Recent work shows zero-shot large-language mod-
els (LLMs) can reduce time and cost for patient matching
while maintaining high accuracy [16].

Although coarse-grained approaches may assist initial
recruitment, many trials benefit from fine-grained automated
prescreening. For example, tumor next-generation sequenc-
ing (NGS) reports may inform trial recommendations, but
prescreening is required to verify eligibility; manual pre-
screening after biomarker-driven recommendations reduced
physician burden and false positives [17]. Al-assisted
screening tools like Retrieval-Augmented Generation
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(RAG)-Enabled Clinical Trial Infrastructure for Inclusion
Exclusion Review (RECTIFIER) not only reduce screening
time but also improve enrollment rates, as shown in heart fail-
ure clinical trials [18]. However, there remains no framework
for creating and assessing the complexity of fine-grained
clinical trial matching. This paper presents a computational
framework for structuring and analyzing clinical trial criteria
to enable Al-guided fine-grained matching. We define units
of computation, introduce a complexity scoring system, and
present real-world use cases across three clinical trials to
demonstrate the practical application of our approach.

Methods

Three real clinical trial protocols were collected from a large
academic hospital. The three analyzed trial protocols repre-
sented distinct therapeutic domains: oncology (DTBRE23078,
Phase 3 RCT), precision medicine (MATCH, Phase 2 basket
trial), and observational cardiology (INSIGHT). Each proto-
col’s inclusion and exclusion criteria were extracted directly
from the official protocol documents rather than operational
checklists, ensuring that the structured decomposition reflected
the authoritative source text used in trial design.

Protocols were mapped to variables and associated data ele-
ments for extraction to determine eligibility. From the example
above, variables include date of surgery, date of last (neo)adju-
vant chemotherapy, and date of recurrence. An independent
variable is defined as a discrete unit of data extracted from
clinical text based on provided logical instructions. Computa-
tionally, a variable operates as a RAG on top of clinical notes
with instructions. Figure 2 shows an example of the indepen-
dent variables defined to capture the data points needed to cal-
culate time between definitive treatment and recurrence. The
discrete unit of data here represents the timestamps of events.
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Date of primary
tumor surgery

At least 12 months have elapsed between completion of treatment with curative intent (e.g.,|date of primary breast tumor surgery
ordate of last (neo)adjuvant chemotherapy administration, whichever occurred last) and the first documented disease recurrence

Date of last
(neo)adjuvant
chemotherapy

Date of first
recurrence

Fig. 2 Example of manually translating unstructured clinical trial criterion free text into independent variables

Many independent variables can be collated to capture
more complex trial criteria. A dependent variable takes as
input one or more independent or dependent variables, and
using logical instructions, extracts a discrete unit of data.
Unlike an independent variable, dependent variables do not
read directly from clinical text, only taking results from
variables as inputs. The recursive definition of dependent
variables, where they can be used as input to other depen-
dent variables, allows for the representation of complex
clinical trial criteria through a hierarchy.

Variables are further categorized by data type and scope
(Table 1). Data types include standard programming types
such as integer, float, boolean, timestamp, or text. Indetermi-
nate was defined as not falling into a standard data type (e.g.,
eligibility based on clinician intuition). The scope captures
the granularity by which data should be aggregated across
notes. In the simplest case, data are not aggregated and have

Table 1 Explanations of variable attributes: data type, scope, and

dependency

Variable Attributes Explanation

Data Type Standard data formats such as integer, float,
boolean, timestamp, or text. "Indeterminate"
for non-standard cases (e.g., eligibility based
on clinical intuition)

Scope Defines how data are aggregated across notes

Many Per Note Variable appears multiple times within a single
clinical note (e.g., medication administrations)

One Per Note Variable is aggregated to a single value within
a single clinical note (e.g., highest recorded
temperature in a daily progress note)

One Per Patient Variable is aggregated across multiple notes
for a patient (e.g., whether a patient has ever
had cancer)

Dependency Defines whether a variable is independent or
dependent

Independent Extracted directly from clinical text using
logical instructions (e.g., date of primary
tumor surgery)

Dependent Computed based on independent or other

dependent variables using logical opera-
tions, without direct text extraction (e.g., time
between definitive treatment and first cancer
recurrence)

a scope as many-values-per-note. Additionally, data can be
aggregated within a note (one-value-per-note) or aggregated
across a patient (one-value-per-patient). For example, a vari-
able that captures if a patient ever has cancer would have a
scope of one-value-per-patient, while a variable that captures
each medication administration would have a scope of many-
values-per-note. A range of aggregation strategies can be con-
sidered for one-value-per-patient including choosing the most
frequent value, the first value, the last value, the earliest date
of occurrence, the latest date of occurrence, and others.

Using this design, clinical trial eligibility is defined as the
boolean output of a dependent variable, where the dependent
variable may have multiple independent and dependent vari-
able inputs. In practice, the clinical trial eligibility is determined
by collating the output from multiple variables, where trial cri-
teria would ultimately be represented by dependent variables.
In the case of the three analyzed clinical trials, hundreds of
variables are defined to determine eligibility. Domain experts,
including clinical research coordinators and investigators,
were consulted during the decomposition process to validate
variable mappings and ensure clinical relevance. Examples of
these clinical trial mappings are provided in the results section.

To measure clinical trial complexity, two metrics were
used. Flesch-Kincaid reading grade level considers the
number of syllables, words, and sentences to approximate
the U.S. grade level required to understand a piece of text
(https://storytoolz.com/readability). Criterion complexity
is defined as the number of unique independent variables
times 2 to the power of the number of dependent variables
(Fig. 3). The total trial complexity for a trial protocol equals
the sum of criteria complexity scores for that trial.

While Flesch-Kincaid level estimates ease of reading
for a human clinical trial screener, trial complexity quan-
tifies the computational challenge of automatically screen-
ing patients. Independent variable retrieval involves finding
data points while dependent variable retrieval requires com-
bining variables and thus contributes a higher level of com-
plexity. To understand how these two measures are related,
Spearman’s rank correlation coefficients were calculated
for complexity by word count and Flesch-Kincaid reading
grade level.
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Fig. 3 Formulas for criterion and total complexity scoring. C: Com-
plexity; I: Number of unique independent variables; D: Number of
dependent variables

Results

Three clinical trial protocols (A-C) contained 8 to 39 cri-
teria (Table 2). Median reading grade levels for each crite-
rion ranged from sixth grade to first year of college. Trial
A exhibited a high word count and reading level. Trial B
contained full sentences but with simpler language. Trial
C contained predominantly bullet points with even simpler
language. The three protocols contained 22 to 159 variables.
Boolean was the predominant data type. The scope of most

variables was one-per-patient (e.g., age). Dependent vari-
ables ranged from 4 to 22% of the total number of vari-
ables needed to define the trial criterion. Figure 4 illustrates
examples of how independent and dependent variables
were structured to represent clinical trial criteria, which are
explained in more detail below.

The first example text is: Not previously HER2+on
pathology testing. The text contains one independent vari-
able and no dependent variables. The complexity equals 1.

The second example text is: Does not have a positive
serum pregnancy test and is not breastfeeding for patients
who are assigned female at birth. The text contains three
independent variables (each of which returns the most
recent values) and no dependent variables. The complexity
equals 3.

The third example text is: Patients must have completed
any anticancer treatment greater than or equal to 14 days
prior to randomization. Any toxicity experienced on prior
treatment must have resolved or be considered clinically
stable prior to randomization. The text contains two inde-
pendent variables (each of which returns the most recent
values) and two dependent variables. The complexity equals
2 (independent variables) times 2 to the power of 2 (depen-
dent variables), which equals 8.

The fourth example text is: Patient must not have a his-
tory of significant cardiovascular disease, defined as: a)

Table 2 Sentence-level and variable-level characteristics for three clinical trials

Trial A Trial B Trial C
Number of Criteria 39 14 8
Word Count
Median (Interquartile Range) 27 (13-54) 16 (10-23) 9 (6-15)
Total 1605 203 82
Reading Level Per Criterion
Median (Interquartile Range) 13.1 (9.1-15.7) 12.0 (10.4-14.4) 5.9(4.5-9.2)
Highest 335 19.6 9.5
Total Number of Variables 160 26 22
Variable Data Type
Integer 2 0 4
Float 2 0 0
Boolean 111 17 16
Text 14 0 0
Timestamp 24 3 2
Indeterminate 7 6 0
Variable Scope
Many Per Note 4 3 0
One Per Note 3 8 0
One Per Patient 153 15 22
Variable Dependency
Independent 131 25 19
Dependent 29 1 3
Complexity
Median (Interquartile Range) 2.0 (1.0-8.0) 3.0 (2.04.0) 2.0 (1.0-2.5)
Total 496 31 30
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Fig.4 Top-down example hierarchies of independent (red) and depen-
dent (blue) variables as well as complexity scores for five criteria from
one clinical trial. ACS: acute coronary syndrome; CHF: congestive
heart failure; Hx: history; V-tach: ventricular tachycardia; V-fib: ven-

Myocardial infarction or unstable angina pectoris within
6 months of enrollment. b) History of serious ventricular
arrhythmia (i.e., ventricular tachycardia or ventricular fibril-
lation), high-grade atrioventricular block, or other cardiac
arrhythmias requiring antiarrhythmic medications (except
for atrial fibrillation that is well controlled with antiar-
rhythmic medication); history of QT interval prolongation.
¢) New York Heart Association Class III or greater conges-
tive heart failure or known left ventricular ejection fraction
0f<40%. This criterion is composed of three sub-criteria. In
total, there are seven independent variables (each of which
returns the most recent value) and three dependent variables.
The complexity equals 7 (independent variables) times 2 to
the power of 3 (dependent variables), which equals 56.

The fifth example text is: Patients must have one of the
following: a) Disease progression on greater than or equal
to 2 or more previous lines of ET with or without a targeted
therapy in the metastatic setting. Disease recurrence while
on the first 24 months of starting adjuvant ET will be con-
sidered a line of therapy; these patients will only require 1
line of ET in the metastatic setting. b) Disease progression
within 6 months of starting first-line ET with or without a

C=64

tricular fibrillation; AV: atrioventricular; LVEF: left ventricular ejec-
tion fraction; NYHA: New York Heart Association; ET: endocrine
therapy; CDKi: cyclin-dependent kinase inhibitor

CDK 4/6 inhibitor in the metastatic setting. ¢) Disease
recurrence while on the first 24 months of starting adjuvant
ET with CDK 4/6 inhibitor and if the patient is no longer a
candidate for additional ET in the metastatic setting. This
criterion is composed of three sub-criteria. In total, there
are eight unique independent variables (four of which are
used multiple times) and three dependent variables. Six
independent variables return the most recent value while the
other two return multiple dates as applicable. The complex-
ity equals 8 (unique independent variables) times 2 to the
power of 3 (dependent variables), which equals 64.

The median (IQR) criterion complexity of Trials A, B,
and C across all criteria was 2.0 (1.0-8.0), 3.0 (2.0-4.0),
and 2.0 (1.0-2.5), respectively. As Fig. 5 shows, a subset
of criteria has extremely high complexity. The total com-
plexity for Trials A-C was 496, 31, and 30, respectively.
The association of complexity with word count and reading
level varied by the way criteria were written for each of the
trials. Complexity was strongly correlated with word count
for Trials A and B but not C while complexity exhibited
non-significant trends toward weak to moderate correlation
with reading level for Trials A and B but not C (Table 3).
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Fig. 5 Box and whisker plots of complexity scores for each criterion
in three clinical trials. Bottom and top of each box indicate lower and
upper quartiles. The inner line indicates the median while “X” marks
the average. Dots indicate outliers that are 3/2 times the upper or lower
quartile while upper and lower whiskers indicate the highest and low-
est values, excluding outliers

Table 3 Spearman’s rank correlation coefficients for complexity by
word count and Flesch-Kincaid reading grade level

Trial A Trial B Trial C
Word Count rho=0.76; rho=0.79; rho=0.08;

»<0.001 p=0.007 p=0.860
Flesch-Kincaid rho=0.28; rho=0.50; rho=0.37;
Reading Grade »=0.090 p=0.143 p=0.374
Level

Spearman’s rho ranges from 1.0 (perfect positive correlation) to 0 (no
correlation)

Discussion

The three analyzed clinical trials demonstrated varying
levels of complexity, with boolean data type and one-per-
patient scope dominating. Independent and dependent vari-
ables interact in a multi-stage hierarchy to satisfy eligibility
requirements. The proportion of dependent to independent
variables differed substantially between trial protocols.
Although complexity scores for most criteria were relatively
low, several criteria for each trial exhibited substantially
higher complexity due to a large number of independent
variables or the presence of dependent variables. The

@ Springer

median reading grade levels of trial criteria ranged from
sixth grade to first-year college level.

The three clinical trials (A—C) analyzed included
DTBRE23078, MATCH, and INSIGHT. For example,
DTBRE23078 is a Phase 3 randomized-controlled trial
investigating Sacituzumab Govitecan versus physician-
selected treatment in HR+/HER2- advanced breast cancer
[19]. The eligibility criteria documented internally in PDFs,
like those sourced from OnCore, often differ significantly
from publicly available summaries on ClinicalTrials.gov.
Internal PDFs typically present more detailed and explicit
instructions, variable definitions, and specific clinical con-
ditions required for enrollment, reflecting comprehensive
protocol specifics and often including confidential or pro-
prietary trial elements not fully listed online. In contrast,
ClinicalTrials.gov tends to provide higher-level criteria
summaries, ultimately omitting necessary methodological
guidance or nuanced eligibility conditions. This high level
of abstraction in publicly available summaries underscores
the need for careful cross-referencing to ensure complete-
ness and accuracy when developing automated matching
algorithms.

A critical question in Al-guided clinical trial matching is
the extent to which human expertise versus Al automation
defines the structure, hierarchy, and definitions of eligibil-
ity criteria [20]. Traditionally, humans review clinical trial
protocols and manually establish the multi-level structure
of inclusion and exclusion criteria. Inclusion criteria often
follow conjunctive (AND) logic, while exclusion criteria
are frequently structured with disjunctive (OR) logic. This
distinction is important for computational parsing, as Al
systems must handle these logical operators differently to
preserve clinical validity. Failure to account for this differ-
ence may bias eligibility assessments. While manual review
ensures clinical nuance, it is labor-intensive and prone to
variability. Al can assist by automating the extraction and
hierarchical organization of eligibility criteria from unstruc-
tured documents and systematically analyzing patient data
against this structured framework. The ability to first define
a structured representation of trial criteria is critical, as it
allows Al to analyze eligibility more systematically, reduc-
ing inconsistencies and improving efficiency.

To enable problem identification and resolution while
safeguarding data privacy and appropriate use, LLM
deployment in trial matching necessitates transparency and
standardization. The TRIPOD-LLM reporting guideline
underscores the need for structured methodologies when
LLMs are applied in clinical settings to ensure reliability,
explainability, and compliance in patient recruitment [21].
Jain et al. [15] proposes a conceptual framework that inte-
grates electronic health records (EHRs), real-time patient
data, and Al-driven analytics to streamline prescreening
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and enhance patient engagement. However, there remains
no framework for creating and assessing the complexity of
fine-grained clinical trial matching.

Ultimately, the optimal approach to patient matching
may lie in a hybrid model: Al rapidly processes unstruc-
tured trial data and identifies discrete elements, while
human experts refine and validate these results. A key chal-
lenge lies in AI’s ability to not only extract relevant data
elements but also interpret their hierarchical and recursive
dependencies within trial criteria. Many eligibility rules
involve multi-step logic, requiring Al to understand how
different conditions interact over time. Although we did not
directly test Al model performance, our complexity frame-
work has implications for Al-guided trial matching. High
complexity scores may correlate with increased runtime
and error rates in automated systems. Prior work supports
combining human and machine intelligence to handle this
complexity [22, 23]. Future work should explore strate-
gies to enhance Al’s ability to autonomously define and
analyze these dependencies, reducing the need for manual
rule-setting while maintaining clinical accuracy. Addition-
ally, developing scoring systems to quantify the complexity
of trial-matching tasks will be crucial. By addressing these
challenges, AI can move beyond simple, coarse-grained
matching and advance toward a more sophisticated, clini-
cally meaningful approach to trial eligibility assessment.

This study has limitations. First, the analysis was lim-
ited to three trials from a single institution, which constrains
generalizability. Second, manual decomposition introduces
subjectivity, as variable definitions and dependencies may
differ across reviewers. Third, readability formulas such
as Flesch-Kincaid capture linguistic complexity but do
not fully reflect the cognitive burden for clinicians. Addi-
tionally, the formula to calculate criterion complexity may
require further validation and refining by incorporating
more context and variable characteristics such as variable
type. Finally, overly granular decomposition risks excluding
eligible patients when EHR data are incomplete or inconsis-
tently coded, which may disproportionately affect underrep-
resented populations. Balancing precision with inclusivity
remains a critical challenge.

Conclusion

This study discusses challenges of fine-grained clinical
trial matching. However, before that is possible, trial cri-
teria must first be broken down into structured hierarchies
of discrete elements of patient data. First, the paper defines
the problem of clinical trial matching with fine-grained cri-
teria, highlighting the recursive dependencies and multi-
stage logic. Second, the computation units of clinical trial

matching were defined using variables and dependent vari-
ables. Third, a novel yet simple complexity scoring system
was introduced to quantify the computational burden of trial
matching. Finally, these methods were applied to real-world
use cases, analyzing three clinical trials of varying complex-
ity to showcase trial criteria design and complexity. Human
mapping of clinical trial variables informs future work tran-
sitioning from manually screening patients using complex
protocol documents to automatically creating variable hier-
archies using Al-guided chart abstraction and performing
fine-grained matching.

SupplementaryInformation The online version contains supplementary
material available at https://doi.org/10.1007/s10916-025-02303-y.

Author Contribution D.R.S.H.: manuscript initial draft, data analysis,
manuscript review, approval of final manuscript I.M.: manuscript ini-
tial draft, figure creation, manuscript review, approval of final manu-
script B.E.: manuscript initial draft, manuscript review, approval of fi-
nal manuscript C.M.: manuscript review, approval of final manuscript
D.F.: project design, manuscript review, approval of final manuscript.

Funding No funding was obtained for this study.

Data Availability Data is provided as part of the supplementary infor-
mation files.

Declarations
Ethics Approval and Consent Not applicable.
Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.o
rg/licenses/by/4.0/.

References

1. Penberthy LT, Dahman BA, Petkov VI, DeShazo JP. Effort
Required in Eligibility Screening for Clinical Trials. J Oncol
Pract. 2012;8:365-370.

2. Schroen AT, Petroni GR, Hongkun Wang, Gray R, Wang XF, Cro-
nin W, Sargent DJ, Benedetti J, Wickerham DL, Djulbegovic B,
Slingluff CL. Preliminary evaluation of factors associated with
premature trial closure and feasibility of accrual benchmarks in
phase IIT oncology trials. Clin Trials. 2010;7:312-321.

3. Unger JM, Vaidya R, Hershman DL, Minasian LM, Fleury
ME. Systematic Review and Meta-Analysis of the Magnitude

@ Springer


https://doi.org/10.1007/s10916-025-02303-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

168

Page 8 of 8

Journal of Medical Systems (2025) 49:168

10.

11.

12.

13.

14.

15.

of Structural, Clinical, and Physician and Patient Barriers to
Cancer Clinical Trial Participation. JNCI J Natl Cancer Inst.
2019;111:245-255.

Unger JM, Cook E, Tai E, Bleyer A. The Role of Clinical Trial
Participation in Cancer Research: Barriers, Evidence, and Strate-
gies. Am Soc Clin Oncol Educ B. 2016:185-198.

Kumar G, Chaudhary P, Quinn A, Su D. Barriers for cancer
clinical trial enrollment: A qualitative study of the perspec-
tives of healthcare providers. Contemp Clin Trials Commun.
2022;28:100939.

Corbie-Smith G, Thomas SB, St. George DMM. Distrust, Race,
and Research. Arch Intern Med. 2002;162:2458.

Ford JG, Howerton MW, Lai GY, Gary TL, Bolen S, Gibbons MC,
Tilburt J, Baffi C, Tanpitukpongse TP, Wilson RF, Powe NR, Bass
EB. Barriers to recruiting underrepresented populations to cancer
clinical trials: A systematic review. Cancer. 2008;112:228-242.
Augustine EF, Adams HR, Mink JW. Clinical Trials in Rare Dis-
ease. J Child Neurol. 2013;28:1142-1150.

Briel M, Elger BS, McLennan S, Schandelmaier S, von Elm E,
Satalkar P. Exploring reasons for recruitment failure in clinical
trials: a qualitative study with clinical trial stakeholders in Swit-
zerland, Germany, and Canada. Trials. 2021;22:844.

Carlisle B, Kimmelman J, Ramsay T, MacKinnon N. Unsuccess-
ful trial accrual and human subjects protections: An empirical
analysis of recently closed trials. Clin Trials. 2015;12:77-83.
Williams CP, Senft Everson N, Shelburne N, Norton WE. Demo-
graphic and Health Behavior Factors Associated With Clinical
Trial Invitation and Participation in the United States. JAMA
Netw Open. 2021;4:€2127792.

DiMasi JA, Grabowski HG, Hansen RW. Innovation in the phar-
maceutical industry: New estimates of R&D costs. J Health Econ.
2016;47:20-33.

Alexander M, Solomon B, Ball DL, Sheerin M, Dankwa-Mullan
I, Preininger AM, Jackson GP, Herath DM. Evaluation of an arti-
ficial intelligence clinical trial matching system in Australian lung
cancer patients. JAMIA Open. 2020;3:209-215.

Jin Q, Wang Z, Floudas CS, Chen F, Gong C, Bracken-Clarke D,
Xue E, Yang Y, Sun J, Lu Z. Matching patients to clinical trials
with large language models. Nat Commun. 2024;15:9074.

Jain NM, Holt M, Micheel C, Levy M. Landscape Analysis of
Breast Cancer and Acute Myeloid Leukemia Trials Using the
My Cancer Genome Clinical Trial Data Model. JCO Clin Cancer
Informatics. 2021:975-984.

@ Springer

18.

19.

20.

21.

22.

23.

. Wornow M, Lozano A, Dash D, Jindal J, Mahaffey KW, Shah NH.

Zero-Shot Clinical Trial Patient Matching with LLMs. NEJM AL
2025;2.

. Jain NM, Culley A, Micheel CM, Osterman TJ, Levy MA.

Learnings From Precision Clinical Trial Matching for Oncology
Patients Who Received NGS Testing. JCO Clin Cancer Informat-
ics. 2021:231-238.

Unlu O, Varugheese M, Shin J, Subramaniam SM, Stein DW1J, St
Laurent JJ, Mailly CJ, McPartlin MJ, Wang F, Oates MF, Cannon
CP, Scirica BM, Wagholikar KB, Aronson SJ, Blood AJ. Manual
vs Al-Assisted Prescreening for Trial Eligibility Using Large
Language Models—A Randomized Clinical Trial. JAMA. Febru-
ary 2025.

Study of Sacituzumab Govitecan Versus Treatment of Physician’s
Choice in Patients With Hormone Receptor-positive/Human Epi-
dermal Growth Factor Receptor 2 Negative (HR+/HER2-) Meta-
static Breast Cancer Who Have Received Endocrine Therapy
(ASCENT-07). ClinicalTrials.gov identifier: NCT05840211.
Updated August 29, 2024. https://clinicaltrials.gov/study/NCT05
840211. Accessed March 23, 2025.

Gallifant J, Afshar M, Ameen S, Aphinyanaphongs Y, Chen S,
Cacciamani G, Demner-Fushman D, Dligach D, Daneshjou R,
Fernandes C, Hansen LH, Landman A, Lehmann L, McCoy LG,
Miller T, Moreno A, Munch N, Restrepo D, Savova G, et al. The
TRIPOD-LLM reporting guideline for studies using large lan-
guage models. Nat Med. 2025;31:60-69.

Jain NM, Culley A, Knoop T, Micheel C, Osterman T, Levy M.
Conceptual Framework to Support Clinical Trial Optimization
and End-to-End Enrollment Workflow. JCO Clin Cancer Infor-
matics. 2019:1-10.

Sun Y, Butler A, Diallo I, Kim JH, Ta C, Rogers JR, Liu H, Weng
C. A framework for systematic assessment of clinical trial popula-
tion representativeness using electronic health records data. Appl
Clin Inform. 2021;12:816-825.

Fang Y, Idnay B, Sun Y, Liu H, Chen Z, Marder K, Xu H,
Schnall R, Weng C. Combining human and machine intelligence
for clinical trial eligibility querying. ] Am Med Inform Assoc.
2022;29:1161-1171.

Publisher's Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.


https://clinicaltrials.gov/study/NCT05840211
https://clinicaltrials.gov/study/NCT05840211

	﻿Computational Framework for Structuring and Analyzing Clinical Trial Criteria for AI-Guided Fine-grained Matching
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿Results
	﻿Discussion
	﻿Conclusion
	﻿References


