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participated in trials [3, 4]. Four of the primary enrollment 
barriers include healthcare professional time constraints, 
limited awareness of available trials, strict eligibility cri-
teria, and complex clinical design [5]. Additional barriers, 
such as logistical challenges and historical mistrust, further 
impede participation, especially among underrepresented 
populations [6, 7]. These challenges are particularly promi-
nent in rare disease research, where eligible patient popu-
lations are inherently limited and geographically dispersed 
[8]. Low enrollment is the main reason for randomized con-
trolled trials (RCTs) stopping early [9], which compromises 
statistical power, yields inconclusive results, and wastes 
resources [10]. Safely lowering trial participation barriers 
would improve the accuracy and speed of data collection on 
new treatments, facilitating drug safety and timely release 
to the public [11]. With drug development costs exceeding 
$2.6 billion apiece due in part to inefficiencies in the clini-
cal trial process [12], innovative approaches are needed to 
streamline matching while addressing accessibility, trans-
parency, and inclusivity.

Introduction

Clinical trials are necessary for medical innovation, but 
recruitment remains a substantial obstacle [1, 2]. In 2020, 
41% of Americans reported not knowing anything about 
clinical trials, and only 5% of eligible adult cancer patients 
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Abstract
While artificial intelligence (AI) has demonstrated potential in automating clinical trial matching, most existing solutions 
rely on high-level structured data or oversimplified criteria. This study introduces a framework to structure and analyze eli-
gibility criteria across three real-world trial protocols, aiming to inform more granular AI-driven trial matching strategies. 
Trial criteria from three protocols were decomposed into individual variables and evaluated based on data type, scope, 
and dependency. Complexity was assessed using a novel formula incorporating the number of independent and dependent 
variables, alongside the Flesch-Kincaid reading grade level. Quantitative analysis explored variation across trials. Proto-
cols contained between 22–160 eligibility variables, with 4–22% showing interdependence. Reading grade levels ranged 
from sixth grade to first-year college. Complexity scores varied significantly, with some trials exhibiting particularly high 
cognitive and logical burdens. Recursive and hierarchical structures were prevalent in high-complexity protocols. This 
study reveals the substantial variability and structural complexity of clinical trial criteria, highlighting challenges for AI 
matching systems. A standardized approach to measuring trial complexity can enhance algorithm transparency, scalability, 
and interpretability. These findings underscore the need for structured, computable frameworks to improve equity and 
efficiency in clinical trial recruitment.
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Artificial intelligence (AI) has garnered significant atten-
tion in clinical trial matching. Coarse-grained matching, 
which uses higher-level structured criteria (e.g., Interna-
tional Classification of Diseases [ICD] codes), enables sub-
group analysis but is insufficient for trials with more detailed 
or unstructured eligibility requirements [13]. For example, 
TrialGPT matched patients to potential trials with 87% 
accuracy, decreasing screening time by 43%, but relied on 
high-level criteria [14]. Oncology trials increasingly rely on 
intricate biomarker-driven eligibility, demanding advanced 
frameworks that integrate molecular, clinical, and demo-
graphic parameters [15]. Fine-grained matching requires 
extracting and aggregating multiple data points, often from 
unstructured notes, and applying logical or temporal rela-
tionships (Fig. 1). Moreover, the criteria include logical and/
or temporal functions across multiple extracted data points 
to determine eligibility. These fine-grained criteria require 
multi-stage analyses across many clinical notes of differ-
ent formats and hundreds of variables to be extracted per 
trial to include/exclude more specific groups of patients, 
allowing for more detailed hypothesis testing. For instance, 
confirming that “at least 12 months have elapsed between 
the last curative treatment and disease recurrence” requires 
extracting and reasoning over several timestamps and 
events. Recent work shows zero-shot large-language mod-
els (LLMs) can reduce time and cost for patient matching 
while maintaining high accuracy [16].

Although coarse-grained approaches may assist initial 
recruitment, many trials benefit from fine-grained automated 
prescreening. For example, tumor next-generation sequenc-
ing (NGS) reports may inform trial recommendations, but 
prescreening is required to verify eligibility; manual pre-
screening after biomarker-driven recommendations reduced 
physician burden and false positives [17]. AI-assisted 
screening tools like Retrieval-Augmented Generation 

(RAG)-Enabled Clinical Trial Infrastructure for Inclusion 
Exclusion Review (RECTIFIER) not only reduce screening 
time but also improve enrollment rates, as shown in heart fail-
ure clinical trials [18]. However, there remains no framework 
for creating and assessing the complexity of fine-grained 
clinical trial matching. This paper presents a computational 
framework for structuring and analyzing clinical trial criteria 
to enable AI-guided fine-grained matching. We define units 
of computation, introduce a complexity scoring system, and 
present real-world use cases across three clinical trials to 
demonstrate the practical application of our approach.

Methods

Three real clinical trial protocols were collected from a large 
academic hospital. The three analyzed trial protocols repre-
sented distinct therapeutic domains: oncology (DTBRE23078, 
Phase 3 RCT), precision medicine (MATCH, Phase 2 basket 
trial), and observational cardiology (INSIGHT). Each proto-
col’s inclusion and exclusion criteria were extracted directly 
from the official protocol documents rather than operational 
checklists, ensuring that the structured decomposition reflected 
the authoritative source text used in trial design.

Protocols were mapped to variables and associated data ele-
ments for extraction to determine eligibility. From the example 
above, variables include date of surgery, date of last (neo)adju-
vant chemotherapy, and date of recurrence. An independent 
variable is defined as a discrete unit of data extracted from 
clinical text based on provided logical instructions. Computa-
tionally, a variable operates as a RAG on top of clinical notes 
with instructions. Figure 2 shows an example of the indepen-
dent variables defined to capture the data points needed to cal-
culate time between definitive treatment and recurrence. The 
discrete unit of data here represents the timestamps of events.

Fig. 1  Characteristics of coarse-
grained and fine-grained clinical 
trial matching
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Many independent variables can be collated to capture 
more complex trial criteria. A dependent variable takes as 
input one or more independent or dependent variables, and 
using logical instructions, extracts a discrete unit of data. 
Unlike an independent variable, dependent variables do not 
read directly from clinical text, only taking results from 
variables as inputs. The recursive definition of dependent 
variables, where they can be used as input to other depen-
dent variables, allows for the representation of complex 
clinical trial criteria through a hierarchy.

Variables are further categorized by data type and scope 
(Table  1). Data types include standard programming types 
such as integer, float, boolean, timestamp, or text. Indetermi-
nate was defined as not falling into a standard data type (e.g., 
eligibility based on clinician intuition). The scope captures 
the granularity by which data should be aggregated across 
notes. In the simplest case, data are not aggregated and have 

a scope as many-values-per-note. Additionally, data can be 
aggregated within a note (one-value-per-note) or aggregated 
across a patient (one-value-per-patient). For example, a vari-
able that captures if a patient ever has cancer would have a 
scope of one-value-per-patient, while a variable that captures 
each medication administration would have a scope of many-
values-per-note. A range of aggregation strategies can be con-
sidered for one-value-per-patient including choosing the most 
frequent value, the first value, the last value, the earliest date 
of occurrence, the latest date of occurrence, and others.

Using this design, clinical trial eligibility is defined as the 
boolean output of a dependent variable, where the dependent 
variable may have multiple independent and dependent vari-
able inputs. In practice, the clinical trial eligibility is determined 
by collating the output from multiple variables, where trial cri-
teria would ultimately be represented by dependent variables. 
In the case of the three analyzed clinical trials, hundreds of 
variables are defined to determine eligibility. Domain experts, 
including clinical research coordinators and investigators, 
were consulted during the decomposition process to validate 
variable mappings and ensure clinical relevance. Examples of 
these clinical trial mappings are provided in the results section.

To measure clinical trial complexity, two metrics were 
used. Flesch-Kincaid reading grade level considers the 
number of syllables, words, and sentences to approximate 
the U.S. grade level required to understand a piece of text 
(​h​t​t​p​​s​:​/​​/​s​t​o​​r​y​​t​o​o​​l​z​.​c​​o​m​/​​r​e​a​​d​a​b​i​l​i​t​y). Criterion complexity 
is defined as the number of unique independent variables 
times 2 to the power of the number of dependent variables 
(Fig. 3). The total trial complexity for a trial protocol equals 
the sum of criteria complexity scores for that trial.

While Flesch-Kincaid level estimates ease of reading 
for a human clinical trial screener, trial complexity quan-
tifies the computational challenge of automatically screen-
ing patients. Independent variable retrieval involves finding 
data points while dependent variable retrieval requires com-
bining variables and thus contributes a higher level of com-
plexity. To understand how these two measures are related, 
Spearman’s rank correlation coefficients were calculated 
for complexity by word count and Flesch-Kincaid reading 
grade level.

Table 1  Explanations of variable attributes: data type, scope, and 
dependency
Variable Attributes Explanation
Data Type Standard data formats such as integer, float, 

boolean, timestamp, or text. "Indeterminate" 
for non-standard cases (e.g., eligibility based 
on clinical intuition)

Scope Defines how data are aggregated across notes
Many Per Note Variable appears multiple times within a single 

clinical note (e.g., medication administrations)
One Per Note Variable is aggregated to a single value within 

a single clinical note (e.g., highest recorded 
temperature in a daily progress note)

One Per Patient Variable is aggregated across multiple notes 
for a patient (e.g., whether a patient has ever 
had cancer)

Dependency Defines whether a variable is independent or 
dependent

Independent Extracted directly from clinical text using 
logical instructions (e.g., date of primary 
tumor surgery)

Dependent Computed based on independent or other 
dependent variables using logical opera-
tions, without direct text extraction (e.g., time 
between definitive treatment and first cancer 
recurrence)

Fig. 2  Example of manually translating unstructured clinical trial criterion free text into independent variables
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variables was one-per-patient (e.g., age). Dependent vari-
ables ranged from 4 to 22% of the total number of vari-
ables needed to define the trial criterion. Figure 4 illustrates 
examples of how independent and dependent variables 
were structured to represent clinical trial criteria, which are 
explained in more detail below.

The first example text is: Not previously HER2 + on 
pathology testing. The text contains one independent vari-
able and no dependent variables. The complexity equals 1.

The second example text is: Does not have a positive 
serum pregnancy test and is not breastfeeding for patients 
who are assigned female at birth. The text contains three 
independent variables (each of which returns the most 
recent values) and no dependent variables. The complexity 
equals 3.

The third example text is: Patients must have completed 
any anticancer treatment greater than or equal to 14  days 
prior to randomization. Any toxicity experienced on prior 
treatment must have resolved or be considered clinically 
stable prior to randomization. The text contains two inde-
pendent variables (each of which returns the most recent 
values) and two dependent variables. The complexity equals 
2 (independent variables) times 2 to the power of 2 (depen-
dent variables), which equals 8.

The fourth example text is: Patient must not have a his-
tory of significant cardiovascular disease, defined as: a) 

Results

Three clinical trial protocols (A-C) contained 8 to 39 cri-
teria (Table 2). Median reading grade levels for each crite-
rion ranged from sixth grade to first year of college. Trial 
A exhibited a high word count and reading level. Trial B 
contained full sentences but with simpler language. Trial 
C contained predominantly bullet points with even simpler 
language. The three protocols contained 22 to 159 variables. 
Boolean was the predominant data type. The scope of most 

Table 2  Sentence-level and variable-level characteristics for three clinical trials
Trial A Trial B Trial C

Number of Criteria 39 14 8
Word Count
 Median (Interquartile Range) 27 (13–54) 16 (10–23) 9 (6–15)
 Total 1605 203 82
Reading Level Per Criterion
 Median (Interquartile Range) 13.1 (9.1–15.7) 12.0 (10.4–14.4) 5.9 (4.5–9.2)
 Highest 33.5 19.6 9.5
Total Number of Variables 160 26 22
Variable Data Type
 Integer 2 0 4
 Float 2 0 0
 Boolean 111 17 16
 Text 14 0 0
 Timestamp 24 3 2
 Indeterminate 7 6 0
Variable Scope
 Many Per Note 4 3 0
 One Per Note 3 8 0
 One Per Patient 153 15 22
Variable Dependency
 Independent 131 25 19
 Dependent 29 1 3
Complexity
 Median (Interquartile Range) 2.0 (1.0–8.0) 3.0 (2.0–4.0) 2.0 (1.0–2.5)
 Total 496 31 30

Fig. 3  Formulas for criterion and total complexity scoring. C: Com-
plexity; I: Number of unique independent variables; D: Number of 
dependent variables
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CDK 4/6 inhibitor in the metastatic setting. c) Disease 
recurrence while on the first 24 months of starting adjuvant 
ET with CDK 4/6 inhibitor and if the patient is no longer a 
candidate for additional ET in the metastatic setting. This 
criterion is composed of three sub-criteria. In total, there 
are eight unique independent variables (four of which are 
used multiple times) and three dependent variables. Six 
independent variables return the most recent value while the 
other two return multiple dates as applicable. The complex-
ity equals 8 (unique independent variables) times 2 to the 
power of 3 (dependent variables), which equals 64.

The median (IQR) criterion complexity of Trials A, B, 
and C across all criteria was 2.0 (1.0–8.0), 3.0 (2.0–4.0), 
and 2.0 (1.0–2.5), respectively. As Fig. 5 shows, a subset 
of criteria has extremely high complexity. The total com-
plexity for Trials A-C was 496, 31, and 30, respectively. 
The association of complexity with word count and reading 
level varied by the way criteria were written for each of the 
trials. Complexity was strongly correlated with word count 
for Trials A and B but not C while complexity exhibited 
non-significant trends toward weak to moderate correlation 
with reading level for Trials A and B but not C (Table 3).

Myocardial infarction or unstable angina pectoris within 
6  months of enrollment. b) History of serious ventricular 
arrhythmia (i.e., ventricular tachycardia or ventricular fibril-
lation), high-grade atrioventricular block, or other cardiac 
arrhythmias requiring antiarrhythmic medications (except 
for atrial fibrillation that is well controlled with antiar-
rhythmic medication); history of QT interval prolongation. 
c) New York Heart Association Class III or greater conges-
tive heart failure or known left ventricular ejection fraction 
of < 40%. This criterion is composed of three sub-criteria. In 
total, there are seven independent variables (each of which 
returns the most recent value) and three dependent variables. 
The complexity equals 7 (independent variables) times 2 to 
the power of 3 (dependent variables), which equals 56.

The fifth example text is: Patients must have one of the 
following: a) Disease progression on greater than or equal 
to 2 or more previous lines of ET with or without a targeted 
therapy in the metastatic setting. Disease recurrence while 
on the first 24 months of starting adjuvant ET will be con-
sidered a line of therapy; these patients will only require 1 
line of ET in the metastatic setting. b) Disease progression 
within 6 months of starting first-line ET with or without a 

Fig. 4  Top-down example hierarchies of independent (red) and depen-
dent (blue) variables as well as complexity scores for five criteria from 
one clinical trial. ACS: acute coronary syndrome; CHF: congestive 
heart failure; Hx: history; V-tach: ventricular tachycardia; V-fib: ven-

tricular fibrillation; AV: atrioventricular; LVEF: left ventricular ejec-
tion fraction; NYHA: New York Heart Association; ET: endocrine 
therapy; CDKi: cyclin-dependent kinase inhibitor
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median reading grade levels of trial criteria ranged from 
sixth grade to first-year college level.

The three clinical trials (A–C) analyzed included 
DTBRE23078, MATCH, and INSIGHT. For example, 
DTBRE23078 is a Phase 3 randomized-controlled trial 
investigating Sacituzumab Govitecan versus physician-
selected treatment in HR +/HER2- advanced breast cancer 
[19]. The eligibility criteria documented internally in PDFs, 
like those sourced from OnCore, often differ significantly 
from publicly available summaries on ClinicalTrials.gov. 
Internal PDFs typically present more detailed and explicit 
instructions, variable definitions, and specific clinical con-
ditions required for enrollment, reflecting comprehensive 
protocol specifics and often including confidential or pro-
prietary trial elements not fully listed online. In contrast, 
ClinicalTrials.gov tends to provide higher-level criteria 
summaries, ultimately omitting necessary methodological 
guidance or nuanced eligibility conditions. This high level 
of abstraction in publicly available summaries underscores 
the need for careful cross-referencing to ensure complete-
ness and accuracy when developing automated matching 
algorithms.

A critical question in AI-guided clinical trial matching is 
the extent to which human expertise versus AI automation 
defines the structure, hierarchy, and definitions of eligibil-
ity criteria [20]. Traditionally, humans review clinical trial 
protocols and manually establish the multi-level structure 
of inclusion and exclusion criteria. Inclusion criteria often 
follow conjunctive (AND) logic, while exclusion criteria 
are frequently structured with disjunctive (OR) logic. This 
distinction is important for computational parsing, as AI 
systems must handle these logical operators differently to 
preserve clinical validity. Failure to account for this differ-
ence may bias eligibility assessments. While manual review 
ensures clinical nuance, it is labor-intensive and prone to 
variability. AI can assist by automating the extraction and 
hierarchical organization of eligibility criteria from unstruc-
tured documents and systematically analyzing patient data 
against this structured framework. The ability to first define 
a structured representation of trial criteria is critical, as it 
allows AI to analyze eligibility more systematically, reduc-
ing inconsistencies and improving efficiency.

To enable problem identification and resolution while 
safeguarding data privacy and appropriate use, LLM 
deployment in trial matching necessitates transparency and 
standardization. The TRIPOD-LLM reporting guideline 
underscores the need for structured methodologies when 
LLMs are applied in clinical settings to ensure reliability, 
explainability, and compliance in patient recruitment [21]. 
Jain et al. [15] proposes a conceptual framework that inte-
grates electronic health records (EHRs), real-time patient 
data, and AI-driven analytics to streamline prescreening 

Discussion

The three analyzed clinical trials demonstrated varying 
levels of complexity, with boolean data type and one-per-
patient scope dominating. Independent and dependent vari-
ables interact in a multi-stage hierarchy to satisfy eligibility 
requirements. The proportion of dependent to independent 
variables differed substantially between trial protocols. 
Although complexity scores for most criteria were relatively 
low, several criteria for each trial exhibited substantially 
higher complexity due to a large number of independent 
variables or the presence of dependent variables. The 

Table 3  Spearman’s rank correlation coefficients for complexity by 
word count and Flesch-Kincaid reading grade level

Trial A Trial B Trial C
Word Count rho = 0.76; 

p < 0.001
rho = 0.79; 
p = 0.007

rho = 0.08; 
p = 0.860

Flesch-Kincaid 
Reading Grade 
Level

rho = 0.28; 
p = 0.090

rho = 0.50; 
p = 0.143

rho = 0.37; 
p = 0.374

Spearman’s rho ranges from 1.0 (perfect positive correlation) to 0 (no 
correlation)

Fig. 5  Box and whisker plots of complexity scores for each criterion 
in three clinical trials. Bottom and top of each box indicate lower and 
upper quartiles. The inner line indicates the median while “X” marks 
the average. Dots indicate outliers that are 3/2 times the upper or lower 
quartile while upper and lower whiskers indicate the highest and low-
est values, excluding outliers
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matching were defined using variables and dependent vari-
ables. Third, a novel yet simple complexity scoring system 
was introduced to quantify the computational burden of trial 
matching. Finally, these methods were applied to real-world 
use cases, analyzing three clinical trials of varying complex-
ity to showcase trial criteria design and complexity. Human 
mapping of clinical trial variables informs future work tran-
sitioning from manually screening patients using complex 
protocol documents to automatically creating variable hier-
archies using AI-guided chart abstraction and performing 
fine-grained matching.
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